Evaluating the Water Treatment Effectiveness of the Filtrón

Angela R. Bielefeldt

Associate Professor, Dept. Civil, Environmental, & Arch. Engineering
University of Colorado - Boulder

Professor R. Scott Summers, Chris Fahlin, Suzanne Givler, Kate Kowalski, Katie Medina, Lucas Hollenkamp, Anisha Malhotra, Heather Wright

- Point-of-use water filter
 - Treats enough potable water for a family
- Advocated by Potters for Peace
 - Can be produced locally
- Mix clay + sawdust (or other fine organic)
- Fire, flow test (1-2 L/hr), coat with colloidal silver
- >12,000 in use in >16 countries worldwide

Previous Studies

- Daniele Lantagne, Alethia Environmental (currently with the US CDC)
 - Pore size determination
 - Pathogen removal
 - in laboratory
 - Bacteria; 1 test with protozoans and virus indicator
 - With and without colloidal silver
 - at residences
 - Bacterial removal at 24 homes in Nicaragua

Research Questions

- Hydrodynamic conditions during flow
 - Contact time of pathogens with silver
- Physical removal vs Inactivation
 - Filtration (and impacts of accumulated dirt within the filter); if inactivation, potential for reactivation / repair
- Necessary to "pre treat" very turbid water?
 - Particles clog filter too rapidly and decrease flow rate
- Quantitative understanding of colloidal silver's ability to kill bacteria and viruses
 - "CT" concentration * contact time relationship?
 - Long term effectiveness, as silver leaches away
 - Bacterial "static" vs "cidal" bioclogging over time?

CU Tests

- Intact Filters
 - 7 new produced in Managua.
 Nicaragua
 - 2 new from Nicaragua, w/o silver
 - 3 used by families in Nicaragua for ~3 vrs
- Continuous flow tests to determine hydraulic properties
- Batch tests (similar to field use) for turbidity removal and clogging
- Column tests with circular core samples from a used Filtrón

Hydrodynamics

- Experiments conducted with numerical modeling to determine the flow properties of the filters
- Continuous, constant flow tests conducted on 5 new Filtróns
 - 3 flow rates per filter
 - Hydraulic conductivity (K)2 to 7 cm/d
- Bromide tracer tests
 - Effective porosity, ?, 0.14 to 0.6
 - Tortuosity, ?, 4 to 18
 - Rough correlation between higher? and lower?

Turbidity Removal & Clogging

- Fill filters sequentially with 6-10 batches of each water type
- Measured effluent Q vs time; turbidity; accumulated solids
- Scrub filters to remove solids, then load with next water type

Turbidity Source	Water Turbidity, NTU	Filters Tested
Boulder Creek	10, 20, 40, 50	4 new, 1 new w/o Ag
Irrigation Pond	55, 75, 105, 135	3 new, 1 new w/o Ag, 2 used
Kaolin clay (lab grade)	75	2 new, 1 used

- accumulation of solids within the filter over time leads to increased headloss through the filter cake, and lower flowrates
- · more clogging due to greater turbidity loading

Pathogen Removal Tests

- Batch tests with aqueous solutions of colloidal silver and Fecal coliform bacteria
 - MPN method
 - Contact times 15 min 2 hrs
 - Concentration 20-50 μ g/L (with ~76% < 0.22 μ m, possibly ionic silver)
 - Unreliable trends in F. coliform removal
 - Ionic silver 90-95% kill of E. coli by 50 μ g/L after 60 min (Pedahzur et al. 1997; Kim et al. 2004)

Pathogen Removal Tests

- Column tests with a "core" from a Filtrón used in Nicaragua for ~3 yrs
- Apparatus maintains constant head similar to intact Filtrón

Pathogen Removal

- Other bacteria leached out of ceramic and grew on non-selective agar plates
 - may be due to shipping and handling of filters
 - decreasing type and number of non E. coli bacteria over time (~4-5 types to 1-2 types)
- · Unlikely that these bacteria would be present over the long term

Further Work

- Compare live bacterial removal impacts of coating various concentrations of colloidal silver on the filter cores
- Characterize particle sizes removed by the Filtrón
 - Compare to typical bacteria, viruses, etc.
- Conduct virus removal/inactivation experiments with surrogate bacteriophage plaques (inactivation)

Acknowledgments

- Funding for this work was provided by:
 - The University of Colorado
 - Undergraduate Research Opportunities Program (UROP)
 - Engineering Excellence Fund (EEF)
 - Discovery Learning Center (DLC) apprentice program
 - Multicultural Engineering Program (MEP)
 - The National Science Foundation (NSF) through the REU site at CU